AlICERTS” CERTs"

Al+ Quality Assurance (5 Days) Al*

. . Quality
Program Detailed Curriculum Assurance™

Course Overview

This course provides a comprehensive curriculum for professionals and technical experts to harness the
power of Artificial Intelligence (Al) in Quality Assurance (QA). Through use cases, case studies, and hands-
on projects, participants will learn how to implement Al techniques to improve software testing, defect
prediction, and process optimization. The curriculum is designed to build practical skills and culminates in
a capstone project where learners apply their knowledge to solve real-world QA challenges.

Course Prerequisites

Programming Skills: Basic knowledge of Python and familiarity with software testing lifecycle and tools.
Basics of QA: Basic knowledge of Quality Assurance principles and practices.

Basics of Al: Foundational knowledge of machine learning concepts is beneficial but not mandatory.

Introduction to Quality Assurance (QA) and Al

1.1 Overview of QA

What is QA: Introduction to Quality Assurance, its purpose in software development, and its role in delivering
reliable, high-quality products.

Steps in the QA Lifecycle: Explore the complete QA lifecycle, from requirement analysis to test closure, ensuring
structured and efficient quality assurance processes.

Types of Software Testing: Understand different testing types like functional, non-functional, regression, and more,
to ensure comprehensive software quality evaluation.

Introduction to Automated Testing and its Benefits Over Manual Testing: Discover automated testing tools,
frameworks, and key advantages over manual testing in speed, accuracy, and scalability.

Case Study: Real-world example demonstrating enhanced QA practices, automation implementation, and
improved reliability in a high-security banking software environment.

1.2 Introduction to Al in QA

What is Al, and How Can it Help in Software Testing: Explains the role of Al in automating software testing
processes, improving accuracy, and reducing manual effort in identifying defects.



» Simple Al Tasks - Spotting Repeated Issues Automatically: Discusses how Al can identify and flag recurring issues,
enhancing consistency and speeding up issue detection during software testing.

+ Benefits of Al in QA: Highlights the advantages of integrating Al into QA processes, such as faster testing, better
accuracy, and the ability to handle complex test scenarios.

» Comparing Traditional QA with Al-driven QA: Compares conventional manual QA practices with Al-enhanced
techniques, showcasing improved efficiency, scalability, and precision in testing.

+ Case Study: A practical example demonstrating how Al helps in generating relevant test cases for an e-commerce
platform, improving the testing cycle and coverage.

1.3 QA Metrics and KPIs

» What are QA Metrics, and Why Do They Matter: An overview of key QA metrics and their importance in improving
software quality, tracking progress, and ensuring efficient testing processes.

» Basic metrics: How many Test Cases Pass or Fail: Focus on the fundamental metrics of test case pass/fail rates to
measure software stability and identify areas needing attention.

+ Automation ROI metrics: Test coverage and execution time.: Discuss the return on investment (ROI) in automation
by analyzing test coverage and execution time to assess efficiency and effectiveness.

« Introduction to Simple Data Visualization Using Excel or Python.: Learn basic techniques for visualizing data with
tools like Excel or Python to track QA performance and generate actionable insights.

» Case Study: Tracking QA Performance in a Healthcare Application: A practical example of using QA metrics to
monitor and improve software quality in a healthcare application, emphasizing critical factors and results.

1.4 Use of Data in QA

» What is Data and its Sources: Overview of test logs, user analytics, and historical trends as primary data sources for
defect prediction and analysis.

« Data Preprocessing Techniques: Key methods for preparing data, including cleaning, labeling, and augmentation
to improve model accuracy.

+ Using Labelled and Unlabelled Data for Supervised & Unsupervised Learning in Defect Prediction: Leveraging
both labeled and unlabeled data for effective supervised and unsupervised learning approaches in defect prediction.

« Integrating Real-Time Data Insights for Dynamic Testing: Utilizing real-time data to adjust testing strategies and
enhance responsiveness during defect prediction.

» Case Study: Defect Prediction Using Historical Data for a SaaS Application: Real-world application of historical data
analysis to predict defects in a SaaS environment.

¢ Hands-On: Create a QA metrics dashboard using Python libraries (Pandas, Matplotlib) and integrate basic analytics:
Step-by-step guide to building a dashboard using Python tools for QA metrics analysis and basic visualization
techniques.



Fundamentals of Al, ML, and Deep Learning

2.1 Al Fundamentals

Definition and History of Al: Explore the evolution of Al, from symbolic systems to the rise of neural networks and
their impact on technology.

Key Differences: Understand the distinctions between Al, machine learning, and deep learning, highlighting their
unique functions and relationships.

Applications of Al Across Industries, Focusing on QA: Examine how Al transforms industries with a special focus
on enhancing quality assurance processes and solutions.

Al lifecycle: Learn about the stages of Al development, from problem identification and data collection to model
training and deployment.

2.2 Machine Learning Basics

Basic Concept and Framework of Machine Learning: Introduction to machine learning fundamentals, core
concepts, and the basic framework that drives machine learning systems and algorithms.

Types of Machine Learning, Advantages, Limitation and Use-Cases: Overview of supervised, unsupervised, and
reinforcement learning types, their benefits, challenges, and real-world applications.

Key Machine Learning Algorithms, Advantages, Limitation and Use-Cases: A deep dive into popular algorithms
like linear regression, decision trees, and neural networks, highlighting their strengths, weaknesses, and practical

use-cases.

Model Evaluation Metrics: Accuracy, Precision, Recall, and F1-Score: Explanation of essential performance metrics
in machine learning for model evaluation, including accuracy, precision, recall, and the balanced Fl-score.

Case Study: Exploring how machine learning techniques are applied to analyze customer feedback, improving
quality assurance in service industries.

2.3 Deep Learning Overview

Introduction to Neural Networks and its Importance: An overview of neural networks, their structure, and
significance in machine learning and Al applications for pattern recognition and decision-making.

Understanding Backpropagation and its Important Parameters: A detailed look at backpropagation, its role in
training neural networks, and key parameters like learning rate, momentum, and weight adjustments.

Convolutional Neural Networks (CNNs) for Image Recognition: An exploration of CNNs, focusing on their
application in image recognition tasks through convolutional layers and pooling mechanisms.

Recurrent Neural Networks (RNNs) for Sequence Data: A discussion on RNNSs, their structure, and how they
process sequential data like time series and natural language for predictive modeling.



2.4 Introduction to Large Language Models (LLMs)

What are Large Language Models (LLMs): Overview of LLMs, their structure, and how they process vast amounts of
data to understand and generate human-like text.

How LLMs Understand and Generate Text: Explanation of the techniques LLMs use, including tokenization, context
modeling, and prediction, to comprehend and create coherent text.

Applications of LLMs in QA: Exploring the use of LLMs in Quality Assurance, such as automating testing, bug
detection, and enhancing testing efficiency.

Limitations and Challenges of Using LLMs in QA: Discussing the challenges LLMs face in QA, such as context
comprehension, handling ambiguous inputs, and accuracy in complex scenarios.

Case Study: Explore how LLMs enhance software QA by automating defect detection and optimizing test case
generation for more efficient testing processes.

Hands-On: Learn to build and assess a machine learning model for predicting software defects, utilizing Scikit-learn
to improve QA practices and testing accuracy.

Test Automation with Al

3.1 Test Automation Basics

What is test automation, and why is it important in software development: Overview of test automation and its
significance in improving software quality, efficiency, and reducing human errors in development cycles.

Understanding Test Automation Tools: Introduction to popular test automation tools and their functionalities,
highlighting how they simplify test script creation and execution.

Types of Tests in Test Automation: Explanation of various test types like unit, integration, functional, and regression
tests, and how each is automated for efficiency and accuracy.

How to integrate automated tests into Continuous Integration (Cl) and Continuous Delivery (CD) pipelines: A
guide on embedding automated tests within CI/CD workflows to ensure continuous validation of code quality and

quicker delivery cycles.

Case Study: Real-world example of applying test automation for functional and regression testing to enhance the
reliability and scalability of an e-commerce platform.

3.2 Al-Driven Test Case Generation

Introduction to Al in Test Case Generation: Overview of Al's role in automating and improving the efficiency of test
case creation for software applications.

How Al Understands Software Requirements for Test Case Creation: Explanation of how Al interprets software
requirements to generate relevant and effective test cases.

Types of Test Cases Generated by Al: Overview of the various types of test cases Al generates, such as functional,
regression, and performance tests.

How Al Ensures Test Coverage and Finds Potential Gaps in Testing: Description of how Al optimizes test coverage
and identifies areas with insufficient testing to ensure software reliability.



3.3 Tools for Al Test Automation

Introduction to Al Test Automation Tools: Overview of Al-powered test automation tools and their role in
enhancing software testing efficiency and accuracy.

Popular Al Test Automation Tools: A look at widely used Al test automation tools that streamline testing processes
and improve testing outcomes.

Understanding the process of training Al models for test automation: Insights into how Al models are trained for
automating test cases, including data preparation and algorithm selection.

Best Practices for Using Al Test Automation Tools: Key practices to ensure effective and efficient use of Al test
automation tools for superior testing results.

Case Study: A real-world example of how Al test automation tools optimize mobile app testing in the context of a
ride-hailing service.

3.4 Integration into CI/CD Pipelines

Introduction to CI/CD Pipelines in Software Development: Overview of continuous integration and continuous
deployment pipelines and their role in automating software delivery and ensuring efficient development processes.

Role of Al in dynamic test scheduling for CI/CD environments: Exploring how Al optimizes test scheduling in
CI/CD workflows to enhance efficiency, reduce bottlenecks, and improve overall testing accuracy.

Optimizing execution time using predictive analytics: Using predictive analytics to optimize test execution times
by forecasting potential delays and proactively adjusting pipeline workflows for faster results.

Monitoring and feedback loops for continuous improvement: The importance of real-time monitoring and
feedback mechanisms in CI/CD pipelines to track performance, identify issues, and enable continuous improvement.

Case Study: A detailed analysis of how Al-powered test automation was successfully integrated into a CI/CD pipeline
for a FinTech application, improving efficiency and reliability.

Hands-On: A practical guide on automating test cases with Testim.io and integrating them into Jenkins for a
seamless CI/CD testing process.

Al for Defect Prediction and Prevention

4.1 Defect Prediction Techniques

What is defect prediction, and why is it important in software development: Defect prediction identifies
potential software flaws before release, improving quality, reducing costs, and enhancing overall development
efficiency.

Al Models for Defect Prediction: Al models leverage machine learning algorithms to predict software defects,
enabling proactive error management and improving code reliability and performance.

Techniques for Defect Risk Assessment: Risk assessment techniques evaluate the likelihood of defects in software,
helping teams prioritize testing efforts and mitigate potential issues early in development.

Tools for defect prediction: Weka, Orange: Weka and Orange are powerful machine learning tools that support
defect prediction by analyzing historical data and identifying patterns related to software flaws.

Case Study: This case study demonstrates how machine learning models can predict high-risk defects in e-
commerce platforms, enhancing software quality and minimizing operational disruptions.



4.2 Preventive QA Practices

Introduction to Preventive QA Practices: Overview of strategies aimed at preventing defects early in the software
development lifecycle through best practices and proactive quality assurance methods.

Using Al for Preventive QA: Exploring how Al technologies can enhance quality assurance efforts by predicting
potential defects and automating quality checks during development.

Automated suggestion systems for code quality improvement: Implementing intelligent suggestion systems that
provide real-time recommendations to developers for improving code quality and reducing defects.

Al-driven pair programming for defect prevention: Leveraging Al tools to assist in pair programming, improving
collaboration and preventing defects by offering intelligent insights during the coding process.

Case Study: A real-world example of how Al-driven code review tools helped enhance code quality and prevent
defects in large-scale enterprise applications.

4.3 Test Automation Basics

What is test automation, and why is it important in software development: Overview of test automation and its
significance in improving software quality, efficiency, and reducing human errors in development cycles.

Identifying high-risk areas using predictive analytics: Explores how predictive analytics helps pinpoint potential
high-risk areas in software, improving decision-making during the testing process.

Techniques for prioritizing test scenarios: Discusses various methods for prioritizing test cases based on risk,
ensuring efficient use of resources and maximizing the likelihood of detecting defects.

Dynamic risk-based regression testing: Covers the integration of dynamic risk-based testing into regression
testing, enabling continuous identification of high-risk features and focused testing.

Visualizing risk assessment through heatmaps: Describes how heatmaps are used to visually represent risk levels
in software, aiding in the efficient allocation of testing efforts based on risk intensity.

4.4 Use of Al for Continuous Monitoring

Real-time monitoring of test environments: Continuous tracking and evaluation of test environments to ensure
optimal system performance and early detection of potential issues.

Anomaly detection in system performance logs: |dentifying unusual patterns or outliers in system performance
logs to flag potential malfunctions or inefficiencies.

Automated alerts for potential issues: Instant notification systems designed to alert teams about emerging system
issues, ensuring prompt action.

Feedback loops for continuous quality improvement: A process of collecting data from systems to refine and
enhance the quality of products through iterative improvements.

Case Study: A practical example showcasing how anomaly detection models proactively identify issues in loT
systems before they escalate.

Hands-On: A practical exercise focused on creating a Random Forest model to predict which system modules are
most likely to encounter defects using Scikit-learn.



NLP for QA

5.1 Basics of NLP

What Is NLP, and How Does It Relate to Al and Machine Learning: An overview of Natural Language Processing
(NLP) and its connection to Al and machine learning in analyzing and understanding human language.

Core Concepts in NLP: Tokenization, Stemming, Lemmatization, and Parsing: Key NLP techniques that break
down and process text, including tokenization, stemming, lemmatization, and syntactic parsing for meaningful
analysis.

How NLP Is Applied in QA Processes Like Test Case Generation, Bug Reports, and Documentation Review:
Exploring NLP's role in automating and improving quality assurance tasks such as generating test cases and
reviewing bug reports and documentation.

Importance of Word Embeddings (e.g., Word2Vec, GloVe) in QA Tasks: Understanding how word embeddings
like Word2Vec and GloVe enhance text analysis for quality assurance, improving task automation and accuracy.

Sentiment Analysis and Its Relevance in User Feedback: The application of sentiment analysis to interpret user
feedback, helping organizations improve products and services by analyzing customer opinions.

Case Study: Extracting Test Scenarios fromm Requirement Documents Using NLP: A practical example of applying
NLP to extract relevant test scenarios from requirement documents, streamlining the QA process and improving
efficiency.

5.2NLPin QA

Auto-Generating Test Scenarios From Requirement Documents: Automating test case generation by analyzing
requirement documents, reducing manual effort, and ensuring thorough test coverage for various application
scenarios.

Using NLP for Bug Deduplication and Triaging: Applying natural language processing to identify and eliminate
duplicate bug reports, improving bug triaging efficiency and streamlining issue resolution processes.

Log File Analysis for Anomaly Detection: Analyzing log files to detect anomalies in real-time, identifying
performance issues, bugs, or system irregularities for quicker resolutions and better system health.

Extracting and Clustering Test-Related Insights From Documentation: Using data mining techniques to extract
relevant test data fromm documents, clustering insights to identify patterns and optimize testing strategies.

Case Study: Exploring a case study where NLP techniques were implemented to automate and streamline bug
triaging processes, enhancing productivity and reducing manual efforts for large-scale applications.

5.3 Large Language Models for QA

Fine-Tuning LLMs for QA-Specific Tasks: Customizing large language models to improve performance on quality
assurance tasks such as test case generation and error detection.

Integrating LLMs with CI/CD Pipelines for Continuous QA: Seamlessly incorporating language models into
continuous integration and delivery workflows for real-time testing and quality assurance.

Explainability and Interpretability of LLMs in QA: Ensuring that LLMs in QA provide clear, understandable
reasoning for their decisions to improve trust and transparency in automated testing.



How LLMs Can Assist in Generating Bug Fix Suggestions Based on Historical Bug Reports and Patches:
Leveraging historical data to help language models propose potential fixes for recurring issues, optimizing bug
resolution.

Case Study: A detailed example of how GPT-based models have been successfully utilized to suggest bug fixes by
analyzing previous reports and patches.

5.4 NLP for Bug Resolution and Analysis

Analyzing Root Causes From Historical Bug Reports: Identifying recurring issues by reviewing past bug reports to
uncover underlying causes and prevent future occurrences.

Clustering And Tagging Bugs Using Text Similarity Techniques: Grouping and labeling bugs based on their text
similarity to improve classification and resolution efficiency.

Prioritizing Fixes Based On User Impact And Frequency: Determining which defects to address first by evaluating
their effect on users and how often they occur.

Automating Defect Report Summarization For Stakeholders: Streamlining defect report summaries to provide
clear and concise information for team members and stakeholders.

Case Study: Analyze And Cluster Bug Reports Using NLP Libraries (NLTK, SpaCy, Or Hugging Face Transformers):
Practical application of NLP tools to analyze and categorize bug reports for effective issue tracking and resolution.

Hands-On: Learning to analyze defect logs using popular NLP libraries to extract insights and detect patterns in bug
data.

Al for Performance Testing

6.1 Performance Testing Basics

Introduction to Performance Testing and Its Common Types: Performance testing ensures software meets speed,
scalability, and reliability standards. Common types include load, stress, endurance, and spike testing.

Key Performance Metrics to Measure: Key metrics include response time, throughput, error rate, and resource
utilization to evaluate system performance under various conditions.

Overview of Manual and Traditional Automated Performance Testing Tools: Manual testing evaluates system
performance with human effort, while tools like JMeter and LoadRunner automate and streamline performance
testing processes.

Challenges in Performance Testing: Performance testing faces challenges like environment setup, simulating real-
world traffic, scalability issues, and managing complex test data.

Case Study: This case study highlights how JMeter was used to identify and address performance bottlenecks in a
FinTech application, optimizing overall system performance.

6.2 Al in Performance Testing

The Role of Al in Automating the Identification of Performance Issues and Bottlenecks: Al enhances
performance monitoring by identifying issues and bottlenecks automatically, leading to quicker resolutions and
optimized system performance.



Techniques Al Uses, Such as Anomaly Detection and Pattern Recognition, to Spot Performance Degradation: Al
leverages anomaly detection and pattern recognition to identify unusual behaviors, helping to pinpoint
performance degradation early.

Al for Predicting Performance Under Different Loads: Al models predict system performance across various load
scenarios, enabling proactive adjustments and ensuring system stability under peak conditions.

How to Incorporate Al Tools into Your Existing Performance Testing Pipeline: Learn how to seamlessly integrate
Al-driven tools into your performance testing workflow, improving test accuracy and efficiency.

Case Study: Explore a real-world example of Al detecting and predicting performance bottlenecks in a high-stakes
financial trading system, optimizing trading speed and reliability.

6.3 Visualization of Performance Metrics

Introduction to Performance Metrics Visualization: Overview of performance metrics visualization, its importance
in data-driven decision-making, and the role it plays in improving organizational performance.

Common Visualization Techniques for Performance Data: Exploration of popular techniques such as bar charts,
line graphs, and dashboards for effectively visualizing performmance data.

Tools and Techniques for Visualizing and Interpreting Performance Metrics: A guide to various tools and
techniques for visualizing and analyzing performance metrics to enhance data-driven insights.

Real-time Performance Metrics Using Monitoring Tools: Insight into how real-time performance data can be
tracked and analyzed using specialized monitoring tools for immediate decision-making.

Case Study: A detailed case study showcasing the use of Grafana and Prometheus for visualizing and monitoring
real-time metrics in a cloud-native application.

6.4 Al for Predictive Load Balancing

Introduction to Predictive Load Balancing: Understand the fundamentals of predictive load balancing and its role
in optimizing system performance and resource distribution in real-time.

Al Models for Predicting Test Loads: Explore how Al models can forecast test loads, helping to proactively manage
system resources and enhance application performance.

Integrating Al with CI/CD Pipelines for Load Balancing: Learn how integrating Al into continuous integration and
delivery pipelines can automate load balancing for faster and more efficient deployments.

Balancing integrates with major cloud platforms like AWS, Azure, and Google Cloud to improve scalability and
resource utilization.

Case Study: Review a case study showcasing how Al-powered predictive load balancing enhances performance and
efficiency in cloud-based applications.

Hands-On: Gain practical experience using Locust and Al-based tools to perform performance testing and identify
system bottlenecks.



Al in Exploratory and Security Testing

7.1 Exploratory Testing with Al

Introduction to Exploratory Testing: Understanding the fundamentals and benefits of exploratory testing in
uncovering defects that traditional testing may miss.

Tools for Automated Exploratory Testing: Exploring tools designed to automate the process of exploratory testing,
enhancing efficiency and coverage.

Role of Unsupervised Learning in Uncovering Edge Cases: How unsupervised learning algorithms help identify
edge cases and potential issues during exploratory testing without predefined labels.

Enhancing Exploratory Testing with Scenario-Based Al Simulations: Leveraging Al-driven simulations to create
dynamic testing scenarios that replicate real-world behavior for thorough exploration.

Case Study: Using Al for Exploratory Testing in an E-Commerce Platform: Analyzing the impact of Al-powered
exploratory testing in identifying vulnerabilities and optimizing user experience on an e-commerce platform.

7.2 Al in Security Testing

Introduction to Security Testing: Understanding the importance of identifying vulnerabilities and securing systems
against potential threats through various testing methodologies.

Automating Vulnerability Scanning Using Al Tools: Leveraging Al tools to streamline and enhance the process of
detecting security weaknesses in systems.

Penetration Testing with ML-Powered Attack Simulations: Utilizing machine learning to simulate cyberattacks,
assess system defenses, and improve security protocols.

Threat Modeling and Risk Assessment Using Al: Applying Al to predict, identify, and assess potential threats,
helping prioritize security efforts.

Real-Time Anomaly Detection for Security Breaches: Implementing Al-driven systems to detect abnormal
behavior and potential breaches in real-time.

Case Study: Analyzing a real-world example of how Al-based vulnerability scanning protected a healthcare
application from security threats.

7.3 Advanced Techniques in Security Testing

Al for Malware and Intrusion Detection: Exploring Al's role in identifying and mitigating malware threats,
enhancing system security with real-time detection and automated response capabilities.

Leveraging Blockchain for Secure Test Environments: Using blockchain technology to ensure the integrity and
security of test environments, safeguarding data and enhancing trust in software development.

Automating Compliance Testing for Security Standards: Implementing automation tools to streamline
compliance testing, ensuring software adheres to relevant security standards and regulations with minimal manual
intervention.

Building Self-Healing Systems with Al-Driven Insights: Creating systems that can autonomously detect issues and
self-repair using Al-powered insights, ensuring continuous operation and improved reliability.

Case Study: A detailed analysis of how Al and blockchain technologies are integrated into the FinTech industry to
enhance software security and build trust.



7.4 Al for Threat Analytics

« What Is Threat Analytics: A process of analyzing security data to identify and respond to potential cyber threats,
improving an organization’s ability to detect and mitigate risks in real time.

« Clustering Threat Data for Early Pattern Detection: Using machine learning techniques to group threat data,
enabling the identification of emerging attack patterns and enhancing early detection of security breaches.

« Predictive Analytics for Potential Attack Vectors: Leveraging historical data and Al algorithms to predict potential
attack vectors, allowing proactive measures to defend against cybersecurity threats before they materialize.

+« Automating Security Incident Reports with NLP: Utilizing natural language processing (NLP) to automate the
generation of security incident reports, streamlining the analysis and documentation of security events for faster

decision-making.

« Al-Based Prioritization of Security Fixes: Applying artificial intelligence to prioritize security vulnerabilities based on
risk assessment, helping organizations address critical threats first and improve overall cybersecurity posture.

« Case Study: A real-world example of using clustering techniques to detect unusual patterns in cloud infrastructure,
preventing cyberattacks and improving cloud security.

« Hands-On: A practical session where learners apply Al-based tools to conduct security and exploratory testing,
identifying vulnerabilities and threats in web applications.

Module 8

Continuous Testing with Al

8.1 Continuous Testing Overview

« Introduction to Continuous Testing: Understand the fundamental concepts and importance of continuous testing
in modern software development for ensuring high-quality applications.

» Role of CI/CD Pipelines in Software Quality: Explore how Continuous Integration and Continuous Deployment
pipelines contribute to maintaining consistent software quality throughout the development lifecycle.

« Benefits of Al in Continuous Testing Environments: Learn how Al technologies enhance automation, improve test
accuracy, and increase efficiency in continuous testing scenarios.

+ Real-Time Feedback Loops for Defect Detection: Discover how real-time feedback mechanisms help in identifying
and addressing defects early in the development cycle, ensuring faster resolution.

« Dynamic Test Case Prioritization Based on Pipeline Data: Understand how dynamic prioritization of test cases
using pipeline data optimizes testing efforts, improving test coverage and efficiency.

« Case Study: Al-Driven Continuous Testing in a FinTech Application: Review a practical example of how Al-powered
continuous testing was implemented in a FinTech application to streamline quality assurance processes.

8.2 Al for Regression Testing

« Overview of Regression Testing: An introduction to the purpose and significance of regression testing in ensuring
software functionality after changes or updates.

« Automation of Regression Suites with Al: Exploring the use of Al in automating regression test suites to improve
efficiency and consistency in testing.

« Risk-Based Selection of Test Cases in Regression Testing: A strategy for prioritizing test cases based on risk
factors, optimizing test coverage and resource utilization.



Predicting the Impact of Changes Using Historical Data: Using historical data to predict potential impacts of
changes on existing functionality, enhancing decision-making during regression testing.

Adaptive Testing in Rapidly Changing Environments: Approaches for adjusting testing strategies to
accommodate fast-paced development environments and frequent changes in software.

Case Study: A real-world example showcasing the implementation and benefits of Al in automating regression
testing for an e-commerce platform.

8.3 Advanced Continuous Testing Techniques

Leveraging Al for Parallel Test Execution: Using Al to optimize parallel testing, improving efficiency and reducing
time to execute large test suites.

Predictive Scaling for Testing Infrastructure: Implementing Al-driven predictive scaling to dynamically allocate
resources, ensuring efficient test execution and minimal infrastructure costs.

Al-Powered Scheduling in Multi-Environment Testing: Utilizing Al to intelligently schedule and manage test cases
across multiple environments, enhancing coordination and efficiency.

Integration with Cloud-Based Testing Platforms: Seamlessly integrating Al-powered testing strategies with cloud-
based platforms for scalable, flexible, and resource-efficient test execution.

Case Study: Exploring a real-world example of Al-driven parallel test execution across multiple cloud environments,
optimizing performance and reducing testing time.

8.4 Use-Case: Risk-Based Continuous Testing

Risk Assessment Models For Continuous Integration: Approaches and methodologies for identifying, evaluating,
and mitigating risks in Cl workflows to ensure smooth development cycles and high-quality releases.

Al Tools For Live Defect Tracking During CI/CD: Utilizing artificial intelligence to monitor, identify, and report
defects in real-time within continuous integration and deployment pipelines for quick resolution.

Automating Rollback Mechanisms Based On Test Outcomes: Implementing automated systems to trigger
rollback actions when tests fail, ensuring seamless recovery and maintaining system stability during CI/CD
processes.

Post-Deployment Monitoring With Al: Leveraging Al to continuously monitor application performance, detect
anomalies, and optimize post-deployment operations for better user experiences and operational efficiency.

Case Study: Analyzing the application of risk-based testing strategies in microservices architectures within 1oT
ecosystems to enhance reliability and quality in production.

Hands-On: Practical implementation of automated regression testing and the integration of Al-powered risk
assessments to streamline the Jenkins CI/CD pipeline for improved software quality.



Advanced QA Techniques with Al

9.1 Al for Predictive Analytics in QA

Introduction to Predictive Analytics in QA: Overview of how predictive analytics can enhance quality assurance
processes by forecasting potential issues and improving test outcomes.

Data Collection and Preparation for Predictive Analytics: Key techniques for gathering and preparing data to
build effective predictive models for QA testing.

Predictive Models for Test Cycle Optimization: Methods for applying predictive analytics to optimize test cycles
and reduce testing time while improving accuracy.

Al in Estimating Test Effort and Coverage: Using Al to automate the estimation of required test effort and ensure
comprehensive test coverage.

Dynamic Test Case Prioritization Based on Pipeline Data: Understand how dynamic prioritization of test cases
using pipeline data optimizes testing efforts, improving test coverage and efficiency.

Case Study: Real-world example of applying predictive analytics to optimize testing for an e-commerce platform,
improving efficiency and quality.

9.2 Al for Edge Cases

Identifying Rare Bugs Using Anomaly Detection: Techniques for spotting uncommon bugs by analyzing
deviations from standard patterns, improving bug detection efficiency in complex systems.

Al Simulations for Edge-Case Scenarios: Using artificial intelligence to create simulations that test uncommon or
extreme conditions, ensuring systems perform under rare and unexpected circumstances.

Leveraging GANs for Synthetic Edge-Case Generation: Applying Generative Adversarial Networks to create
realistic edge cases, enhancing testing by generating diverse and rare scenarios that traditional data may miss.

Handling Outlier Data in QA Processes: Methods for managing outlier data during quality assurance, improving
system reliability by focusing on unusual or unexpected inputs that can cause failures.

Case Study: Using GANs to Uncover Rare Defects in a Mobile Gaming Application: Analyzing the use of GANs to

identify hard-to-detect bugs in mobile gaming applications, demonstrating the power of Al in real-world testing
environments.

9.3 Future Trends in Al with QA

Future Trends and Possibilities in Al with QA: Explore the evolving landscape of Al in quality assurance, including
advancements and the potential future impact on testing processes and automation.

Emergence of Autonomous Testing Systems: Examine the rise of autonomous testing systems and their role in
reducing manual effort while enhancing the accuracy and efficiency of software testing.

Role of Quantum Computing in QA: Investigate how quantum computing could revolutionize quality assurance by
providing faster processing power for complex testing scenarios and data analysis.

Al-Powered Real-Time Collaboration Tools: Discover the growing trend of Al-driven tools that enhance real-time
collaboration among teams, improving efficiency and decision-making during software testing.



+ Ethical Considerations in Al-Driven QA: Understand the ethical implications of using Al in quality assurance,
focusing on fairness, transparency, and the potential biases in automated testing systems.

« Case Study: Autonomous Testing for SaaS Applications: Dive into a real-world example of autonomous testing
systems applied to Software as a Service (SaaS) applications, showcasing its benefits and challenges.

9.4 Integration of Emerging Technologies

« Overview of Emerging Technologies: Explore the latest advancements in technology and their impact on various
industries, including QA and testing practices.

» Using AR/VR for QA in Immersive Applications: Understand how augmented and virtual reality enhance quality
assurance processes for immersive and interactive applications.

« Blockchain in QA for Audit Trails: Learn how blockchain technology ensures data integrity, transparency, and
accountability in quality assurance through secure audit trails.

+ Edge Computing and Its Implications for QA: Discover how edge computing enables faster, decentralized data
processing, impacting QA processes in real-time applications.

« Integrating Al with loT Testing Platforms: Explore the integration of Al with 10T platforms to enhance automated
testing, data analysis, and performance monitoring.

» Case Study: Analyze real-world examples of how Al-driven QA practices are used to test and optimize loT-enabled
smart devices.

« Hands-On: Gain practical experience in building predictive models with TensorFlow to analyze QA data and visualize
the results.

Module 10

Capstone Project

AICERTS”

Al+ Quality Assurance Detailed Curriculum Date Issued: 18/05/2025
Version: 1.1



